
A GLOBALLY CONNECTED OVERLAY FOR VIRTUAL RING

ROUTING

REAL

Abstract. We introduce an overlay structure based on the Chord DHT.

Given a connected network of nodes, each having a limited local view of the

network, we provide a distributed asynchronous algorithm that creates a ring
like overlay network. The distributed algorithm ensures that all the nodes end

up on a single cycle. In addition, the cycle’s structure allows efficient greedy

routing of messages between nodes in the network.

1. Intro

Consider a connected network of n computers. Some pairs of computers have a
direct connection between them. We want to be able to pass messages between any
two computers on the network using the existing direct connections.

Assuming that a message originates from some computer, at each stage the cur-
rent computer passes the message to one of his neighbors. Eventually the message
should arrive at its destination computer. We also assume that every computer on
the network has only limited amount of memory, and hence can not comprehend
the full structure of the network.

We can think of the network structure as a simple graph, where vertices represent
computers in the network. Two vertices in the graph have an edge between them
if the two corresponding computers are directly connected.

In this document we propose a distributed algorithm for routing in connected
networks which is based on Chord’s overlay structure [1]. Our design builds upon
the work in [2, 3].

Our main contribution is a new design to the overlay structure, and an analysis
of the resulting overlay connectivity. We prove that our new design always results
in a single connected overlay ring structure.

2. Initial setup

We assume that every node (computer) in the network has a unique ID that is
picked from a large set Sl = [0, 2l). In the rest of this paper we use the unique IDs
of node to refer to them.

Definition 2.1. Given two nodes x, y ∈ Sl, the virtual distance between x and y
is:

d(x, y) =

{
y − x if y ≥ x

2l + y − x otherwise

Date: 30.04.2017.
2010 Mathematics Subject Classification. Primary 05C30.
Freedomlayer research facility.

1

2 REAL

Figure 1. The virtual distance from x to y, and from y to x.

In other words, dist(x, y) is the clockwise distance from x to y.

Note that generally d(x, y) 6= d(y, x). d(x, y) = d(y, x) if and only if x = y. In
addition, d(x, y) + d(y, x) = 2l. Also note that d(x, y) ≡ y − x (mod 2l).

Lemma 2.2. d(x, y) + d(y, z) ≡ d(x, z) (mod 2l)

Proof. d(x, y) + d(y, z) ≡ (y − x) + (z − y) ≡ z − x ≡ d(x, z) (mod 2l)
�

We will use the network nodes’ IDs to create a virtual overlay structure to help us
route messages in the network. This overlay structure is computed by all the nodes
of the network together, and every node contains a small part of the computation
result.

3. IterF-1 Algorithm

We begin with a weak construction called the IterF-1 algorithm. Analyzing
this simpler version of the algorithm will help us to prove a few properties of that
apply to the more general version of the algorithm.

During the execution of this algorithm every node x maintains the following
information:

(1) xl: A node y that minimizes d(y, x− 1), of all the nodes y that x knows of.
(2) xr: A node z that minimizes d(x+ 1, z), of all the nodes z that x knows of.

x will also keep the shortest path he has found to xl and xr, where a path
between two nodes a, b in the network is a series of nodes v1 = a, v2, . . . , vk = b,
And the nodes vi, vi+1 are directly connected for 1 ≤ i ≤ k.

A path to a newly discovered node is calculated by concatenation of paths. As
an example, if node x knows a path to node y, and y tells x about a node z, x will
concatenate the path he has to y: (x, . . . , y), together with the path y has sent him
(y, . . . , z), which will result in the path (x, . . . , y, . . . , z).

For brevity we omit the details of path keeping and concatenation from the
pseudo code of the IterF-1 Algorithm 1.

A GLOBALLY CONNECTED OVERLAY FOR VIRTUAL RING ROUTING 3

Figure 2. xl and xr

Algorithm 1 IterF-1 algorithm

1: procedure UpdateFingers(candidates)
2: xl ← arg min

y∈candidates
d(y, x− 1)

3: xr ← arg min
z∈candidates

d(x + 1, z)

4: end procedure
5: procedure GetFingers
6: return {xl, xr}
7: end procedure
8: procedure GetKnown
9: return (Neighbors(x) ∪GetF ingers()) \ {x}

10: end procedure
11: procedure SendUpdateRequests
12: for each z ∈ GetKnown() do
13: send UpdateRequest(GetKnown()) to z
14: end for
15: end procedure
16: procedure ProcessUpdate(z, knownz)
17: UpdateFingers(knownz ∪ { z, x } ∪GetKnown())
18: end procedure

———————————
19: procedure Initialize
20: UpdateFingers(Neighbors(x) ∪ {x})
21: end procedure
22: procedure onIncomingUpdateRequest(z, knownz)
23: ProcessUpdate(z, knownz)
24: send UpdateResponse(GetKnown()) to z
25: end procedure
26: procedure onIncomingUpdateResponse(z, knownz)
27: ProcessUpdate(z, knownz)
28: end procedure
29: procedure PeriodicTick
30: SendUpdateRequests()
31: end procedure

4 REAL

3.1. Summary of IterF-1. IterF-1 works by having each node keep his best can-
didates for a node from the left and a node from the right. By exchanging their
best left and right candidates, nodes are able to improve their candidates over time.

We explore the pseudo code: The procedure Initialize is called on the initial-
ization of the node x. The procedure PeriodicTick is called every period of time,
for example, every few seconds1. The procedures onIncomingUpdateRequest and
onIncomingUpdateResponse are called upon the receipt of UpdateRequest and Up-
dateResponse messages.

Upon initialization, the node x picks xl and xr to be the most suitable nodes
from the set of nodes he knows: all of his neighbors.

Upon a periodic tick, the node x sends his set of known nodes: xl, xr and his
neighbors, to all the nodes that he knows about: xl, xr and his neighbors. This is
done by sending UpdateRequest messages to all those nodes.

Every node y that receives such an UpdateRequest message first updates his
choices of yl and yr, in case better options were found. Then y responds to x with
an UpdateResponse message that contains all the nodes known to y: yl, yr and y’s
neighbors. x will receive this UpdateResponse message from y, and possibly update
his xl and xr if better options were found.

3.2. Analysis of IterF-1. Assuming that the set of nodes is V ⊆ Sl, we define
the state of the algorithm to be

K = {(x, xl, xr)|x ∈ V }
This is the set of choices of left and right node for all the nodes in the network. We
say that a state K is stationary if K will never change for any order of periodic
ticks and message arrivals.

Lemma 3.1 (IterF-1 Convergence). Every run of IterF-1 arrives at a stationary
state after a finite amount of changes to K.

Proof. For a state K of the algorithm we define:

e1(K) :=
∑
x∈V

d(x + 1, xr) + d(xl, x− 1)

e1 is the energy function of the current state of the algorithm. Note that K changes
whenever a node y updates yl or yr to a better node. In every such case e1(K)
decreases.

As e1 ∈ N, it can decrease only a finite amount of times. Hence K can change
only a finite amount of times, after which the algorithm will reach a stationary
state. �

Lemma 3.2. Assume a stationary state of IterF-1 over a graph G. Then for every

node x ∈ V : xrl = x and xlr = x. (Where xrl is a short notation for (xr)
l
) Every

run of IterF-1 arrives at a stationary state after a finite amount of changes to K.

Proof. Let x be a node in V . Consider xr and xrl. If x = xr this means that x has
no neighbors, and therefore x = xr = xl, and we get xrl = x trivially. Similarly, If
xr = xrl then xr has no neighbors, which means x = xr. Hence x has no neighbors,

1The only property that we require from the periodic ticking is that a tick happens eventually.
The algorithm works properly even if different nodes have different tick frequency, and even if a

node has a changing ticking frequency

A GLOBALLY CONNECTED OVERLAY FOR VIRTUAL RING ROUTING 5

Figure 3. The two cases for xrl

and again we obtain trivially that xrl = x. Therefore in the rest of this proof we
will assume that x 6= xr and xr 6= xrl.

Suppose that x 6= xrl. Then we distinct between two cases (See Figure 3).
Case 1: xrl ∈ (x, xr). (This means that xrl is on the arc between x and xr,

clockwise). In the tick of x, x will send xr an UpdateRequest message. xr will then
send to back to x an UpdateResponse message, which will contain a path to xrl. x
will then update xr to be xrl. This is a contradiction to the given stationary state.

Case 2: xrl ∈ (xr, x). In the next tick of x, x will send xr an UpdateRequest
message. Upon receiving this message, xr will update xrl to be x. This is a
contradiction to the given stationary state.

Therefore we conclude that x = xrl. In a symmetric way it can be shown that
xlr = x. �

Lemma 3.3. Assume a stationary state of IterF-1 over a graph. Then the function
h(x) := xr (Or dually, t(x) := xl) is injective (one to one).

Proof. Let x, y nodes such that h(x) = h(y). By definition this means that xr = yr.

Therefore (xr)
l

= (yr)
l
. By Lemma 3.2 we get that x = (xr)

l
= (yr)

l
= y. �

3.3. Division to h-cycles. We now begin from a node x, and apply the function
h over x multiple times. We get the nodes x, h(x), h(h(x)), There is a finite
amount of nodes, so we expect that eventually some element hk(x) (h applied k
times over x will be equal to some other element hq(x), q < k that was already on
the series. Assume that k is the smallest such integer.

But since h is injective, hq(x) = hk(x) means that x = hk−q(x). We assumed
earlier that k is the index of the first element in our series that equals to a previously
seen element, therefore we conclude that k − q = k, or q = 0. Hence hk(x) = x,
the first element of the series. We get that the series x, h(x), . . . , hk(x) = x form a
cycle. We can such a cycle an h-cycle.

If we now pick some node z that has not appeared in the cycle of the node x,
and start applying h many times over z, we will get another cycle. We can continue
in this fashion to divide all the nodes to different cycles.2

We have special interest in the amount of resulting h cycles after running our
algorithm over a given connected graph. More specifically, our method of routing
relies on the requirement that all nodes end up on the same cycle.

2This property of division to cycles applies to any injective function that operates on a finite
set.

6 REAL

Figure 4. The h-cycles formed by an injective function h operat-
ing on a finite set

7 - 5 - 3 8 -10 -12

| | | |

9 -11 - 1 --- 6 - 4 - 2

Figure 5. A connected graph that results in multiple h cycles
after running IterF-1

Unfortunately, IterF-1 does not supply this guarantee. It is possible to run IterF-
1 over a connected graph and end up with multiple disjoint h cycles. Figure 5 shows
an example for such a connected graph.

Assume that we run the IterF-1 over the connected graph in Figure 5. After
the Initialize procedure, every node will have his two neighbors as his best left and
right nodes, except for the nodes 1 and 6 which have three neighbors each. 1 will
have 11 as his best left node, and 3 as his best right node. 6 will have 4 as his best
left node, and 8 as his best right node.

It can be checked that this state of the algorithm is stationary. As an example,
observe node 5. Node 7 will send information about node 9 to node 5, but 5 will
prefer his current best left and right nodes (3 and 7). Node 3 will send information
about node 1 to 5, but again 5 will prefer his current best left and right nodes.

The stationary state resulted from running IterF-1 over this graph results in two
h disjoint cycles: (1, 3, 5, 7, 9, 11) and (2, 4, 6, 8, 10, 12).

3.4. Multiple rounds. Given a graph G with V (G) ⊆ Sl, we define the following:

Definition 3.4. For every node x ∈ V (G):

(1) next(x) := arg min
y∈V (G)

d(x + 1, y)

(2) prev(x) := arg min
z∈V (G)

d(z, x− 1)

Assume that after running IterF-1 over the graph G only one h-cycle was formed.
Is it always true that xr = next(x) and xl = prev(x) for every x ∈ V (G)? This
property can be useful to create a naive routing algorithm.

Given this property, during a stationary state of IterF-1 every node x keeps a
path to xr = next(x), so we can go from x to next(x) following this path. The

A GLOBALLY CONNECTED OVERLAY FOR VIRTUAL RING ROUTING 7

0 - 2 - 4 - 6

| |

7 - 5 - 3 - 1

Figure 6. A one-cycle graph with multiple rounds

ability to go from x to next(x) allows us to visit all nodes in the graph, eventually
arriving to a wanted destination node.3

Unfortunately, IterF-1 does not always satisfy xr = next(x) for all x ∈ V (G).
This is demonstrated by the graph in Figure 6.

In this example, next(x) = (x + 1) mod 8 for every x ∈ V (G). Running IterF-
1 algorithm over the graph in Figure 6 will yield a stationary state (Right after
running the Initialize procedure for every node), where every node has his best left
and right nodes to be his two neighbors in the graph. Hence the resulting h-cycle
will be (0, 2, 4, 6, 1, 3, 5, 7), which contains all the nodes of the graph.

For this stationary state we have next(0) = 1, but 0r = 2, so it is not true that
xr = next(x) for every node x ∈ V (G).

Informally, we want our cycle to complete only one round, and not two as in the
graph of Figure 6. The following definition tries to capture this idea.

Definition 3.5. Given a cycle C = (c0, c1, . . . , ck−1, ck = c0) ⊆Sl, we define the

amount of rounds of C to be the value R(C) = 1
2l

∑k−1
i=0 d (ci, ci+1)

Lemma 3.6. Let C be an cycle in Sl. Then R(C) ∈ Z.

Proof. For a cycle C = (c0, . . . , ck−1, ck = c0) ⊆ Sl we denote d(C) :=
∑k−1

i=0 d (ci, ci+1).
To prove that lemma it is enough to show that 2l | d(C) for every cycle C ⊆ Sl.

The proof is by induction on the amount of nodes in the cycle. Base case: For
a cycle of one node: (c0), we obtain d(C) = d(c0, c0) = 0 which is divisible by 2l.

Inductive step: Assume that 2l | d(C) for every cycle C of at most k nodes. Let
C be a cycle of k+1 nodes, and denote by C ′ the reduced cycle (c0, . . . , ck−2, ck−1).
We obtain:

d(C) =

k∑
i=0

d (ci, ci+1) =

(
k−2∑
i=0

d (ci, ci+1)

)
+ d(ck−1, ck) + d(ck, c0)(3.1)

≡

(
k−2∑
i=0

d (ci, ci+1)

)
+ d(ck−1, c0)(3.2)

≡ d(C ′) (mod 2l)(3.3)

The equality 3.2 is true because of Lemma 2.2.
As C ′ contains k nodes, we can use the inductive hypothesis to conclude that

2l | d(C ′). But d(C) ≡ d(C ′) (mod 2l), so 2l | d(C) We conclude that 2l | d(C) for
every cycle C ⊆ Sl, and therefore R(C) := d(C)/2l ∈ Z.

�

3This is a very slow routing algorithm. It will visit O(|V |) nodes before arriving at the
destination.

8 REAL

See for example the cycle in Figure 6. Assuming l = 3, we can calculate the
amount of rounds for this cycle to be

(d(0, 2) + d(2, 4) + d(4, 6) + d(6, 1) + d(1, 3) + d(3, 5) + d(5, 7) + d(7, 0)) /8(3.4)

= (2 + 2 + 2 + 3 + 2 + 2 + 2 + 1) /8 = 16/8 = 2(3.5)

4. IterF-2 Algorithm

Next, we make some modifications to the IterF-1 to ensure all the cycles C that
we obtain have only one round (R(C) = 1). Recall that in the IterF-1 algorithm
every node x maintains a path to the nodes closest to him (With respect to the d
metric) from the left and from the right that he knowns of. We called those nodes
xr and xl. In IterF-2 we plan to let every node maintain paths to more nodes.

Definition 4.1. Given a node x, we denote:

(1) ←−xk is the node y that minimizes d(y, x+ k), of all the nodes y that x knows
of.

(2) −→xk is the node z that minimizes d(x+ k, z), of all the nodes z that x knows
of.

The addition x + k is performed modulo 2l.

Note that by definition, xr = −→x1 and xl =←−−x−1.
In IterF-2 every node x maintains paths to xl and to all nodes of the form −−→x±2i ,

for 0 ≤ i < l. The rest of the IterF-2 algorithm is identical to IterF-1. We describe
in Algorithm 2 the modifications required to obtain IterF-2. Note that only the
procedures UpdateFingers and GetFingers were changed.

Algorithm 2 IterF-2 algorithm (Modifications to IterF-1)

1: procedure UpdateFingers(candidates)
2: xl ← arg min

y∈candidates
d(y, x− 1)

3: for i from 0 to l do
4:

−−→x±2i ← arg min
z∈candidates

d(x± 2i, z)

5: end for
6: end procedure
7: procedure GetFingers
8: return

{
xl
}
∪ { −−→x±2i | 0 ≤ i < l }

9: end procedure

4.1. Analysis of IterF-2. Given a graph G with V ⊆ Sl, and an execution of
IterF-2 algorithm over G, we define the state of the algorithm to be

K =
{

(x, xl, {−−→x±2i}l−1i=0)
∣∣ x ∈ V

}
We say that a state K of the IterF-2 algorithm is stationary if K will never

change for any order of periodic ticks and message arrivals.

Lemma 4.2 (IterF-2 Convergence). Every run of IterF-2 arrives at a stationary
state after a finite amount of changes to K.

A GLOBALLY CONNECTED OVERLAY FOR VIRTUAL RING ROUTING 9

Proof. For a state K of the algorithm we define:

e2(K) :=
∑
x∈V

∑
0≤i<l

(
d(xl, x− 1) + d(x + 2i,−→x2i) + d(x− 2i,−−→x−2i)

)
e2 is the energy function of the current state of the algorithm. Note that K changes
whenever a node y updates one of his maintained nodes to a better node In every
such case e2(K) decreases.

As e2 ∈ N, it can decrease only a finite amount of times. Hence K can change
only a finite amount of times, after which the algorithm will reach a stationary
state. �

For every state K2 of an IterF-2 execution, we can reduce the state to a state
K1 of an IterF-1 execution by leaving only x, xl and xr = −→x1 inside every tuple of
the state.

Lemma 4.3 (Stationary Reduction). Assume an IterF-2 stationary state K2 over
a graph G with V (G) ⊆ Sl. Then a reduction of K2 to an IterF-1 state will yield a
state K1 that is IterF-1 stationary.

Proof. Suppose that the reduction state K1 is not IterF-1 stationary. This means
that there is some node z that can receive a message from some node y which will
result in updating one of his best left or right nodes, zl or zr, to a better node.

This could have happened by y sending an UpdateRequest message to z, or by z
sending an UpdateRequest message to y, followed by an UpdateResponse message
from y to z.

The message from y to z contained
{
yl, yr

}
∪Neighbors(y). This means that

the set
{
y, yl, yr

}
∪Neighbors(y) contains a node that is better than zl or zr.

If in the IterF-2 algorithm execution y sends a message to z (Either an Up-
dateRequest or UpdateResponse message), it will give z information about the
nodes

{
y, yl, yr

}
∪Neighbors(y), one of which is a better than zl or zr. Therefore

z will update one of zl, zr. This shows that the state K2 is not IterF-2 stationary,
which is a contradiction. �

We use state reductions to be able to apply our previously obtained IterF-1
results for the execution of the IterF-2 algorithm.

Definition 4.4. An h-path Z between nodes a and b (clockwise) is a sequence
a = z1, z2 . . . , zk = b where h(zj) = zj+1 The d-length of an h-path Z is the

sum d(Z) :=
∑k−1

j=1 d(zj , zj+1). A direct h-path Z between nodes a and b is an

h-path z1, . . . , zk such that d(Z) = d(a, b). Informally, a direct h-path is a path
that doesn’t go more than one round around the circle.

Lemma 4.5. Assume a stationary state during execution of IterF-2 over a graph
G with V (G) ⊆ Sl. Let a ∈ G be a node, and assume 0 ≤ t < l. Then DPATH[t]:
There exist a direct h-path from the node a to the node −→a2t , and from the node −−→a−2t
to the node a.

Proof. By induction on t. We begin with the base case: t = 0. Let a be some
node. For −→a1: The h-path (a,−→a1 = h(a)) is a direct h-path.

For −−→a−1: Note that it must be a node from the set { a− 1, a }. If −−→a−1 = a then
(a) is a 1-node direct h-path from −−→a−1 to a. If −−→a−1 = a − 1, then h(−−→a−1) = a.

10 REAL

Figure 7. −→a2t and −−−→a2t+1

(Otherwise in the next tick of a, a will send −−→a−1 an UpdateRequest message and
a−1 will update h(−−→a−1) = a, a contradiction to the assumed stationary state).

The inductive step: Assume that for some 0 ≤ t < l− 1 that DPATH[t]. We
will prove DPATH[t + 1].

First, we show that there is a direct h-path from a to −−−→a2t+1 . We distinct between
two cases:

Case 1: d(a+ 2t,−→a2t) < d(a+ 2t+1,−−−→a2t+1). Denote z :=
−−→−→a2t2t . We will show that

in this case z = −−−→a2t+1 .
By definition z ∈ [−→a2t +2t,−→a2t]. If z ∈ [−→a2t +2t,−−−→a2t+1) then z is a better candidate

for −−−→a2t+1 . In the next tick of a, a will send an UpdateRequest message to −→a2t . −→a2t
will then send a an UpdateResponse message that contains a path to z. a will then
update −−−→a2t+1 to be z, which is a contradiction to the assumed stationary state of
the algorithm.

If z ∈ (−−−→a2t+1 ,−→a2t] then −−−→a2t+1 is a better candidate for z =
−−→−→a2t2t . In the next tick

of a, a will send an UpdateRequest message to −→a2t . This message will contain a

path to −−−→a2t+1 . −→a2t will then update
−−→−→a2t2t to be −−−→a2t+1 , which is a contradiction to

the assumed stationary state.
Hence the only possibility for z is the value −−−→a2t+1 . By the inductive hypothesis we

have a direct h-path from a to −→a2t , and a direct h-path from −→a2t to
−−→−→a2t2t = z = −−−→a2t+1 .

The triple (a,−→a2t ,−−−→a2t+1) is ordered clockwise. Therefore the concatenation of the
two direct h-paths will result in a direct h-path from a to −−−→a2t+1 .

Case 2: d(a + 2t,−→a2t) ≥ d(a + 2t+1,−−−→a2t+1). Denote y :=
−−−−−→−−−→a2t+1−2t . We will show

that in this case y = −→a2t .
By definition, y ∈ [−−−→a2t+1 − 2t,−−−→a2t+1]. If y ∈ [−−−→a2t+1 − 2t,−→a2t) then y is a better

candidate for −→a2t . In the next tick of a, a will send an UpdateRequest message to
−−−→a2t+1 . −−−→a2t+1 will then send an UpdateResponse message to a that contains a path
to y. a will then update −→a2t to be y, which is a contradiction to the stationary state
of the algorithm.

If y ∈ (−→a2t ,−−−→a2t+1] then −→a2t is a better candidate for y =
−−−−−→−−−→a2t+1−2t . In the next tick

of a, a will send an UpdateRequest message to −−−→a2t+1 . This message will contain a

A GLOBALLY CONNECTED OVERLAY FOR VIRTUAL RING ROUTING 11

Figure 8. −−→a−2t and −−−−→a−2t+1

path to −→a2t . −−−→a2t+1 will then update
−−−−−→−−−→a2t+1−2t to be −→a2t , which is a contradiction to

the stationary state of the algorithm.
Therefore the only possibility for y is the value −→a2t . By the inductive hypothesis

we have a direct h-path from a to −→a2t , and a direct h-path from −→a2t = y =
−−−−−→−−−→a2t+1−2t

to −−−→a2t+1 . The triple (a,−→a2t ,−−−→a2t+1) is ordered clockwise. Therefore the concatenation
of the two direct h-paths will result in a direct h-path from a to −−−→a2t+1 .

Next, we show that there is a direct h-path from −−−−→a−2t+1 to a. We distinct
between two cases:

Case 1: d(a − 2t,−−→a−2t) < d(a − 2t+1,−−−−→a−2t+1). Denote z :=
−−−−−→−−→a−2t−2t . We will

show that in this case z = −−−−→a−2t+1 .
By definition z ∈ [−−→a−2t − 2t,−−→a−2t]. If z ∈ [−−→a−2t − 2t,−−−−→a−2t+1), then z is a better

candidate for −−−−→a−2t+1 . In the next tick of a, a will send an UpdateRequest message
to −−→a−2t .

−−→a−2t will then send an UpdateResponse message back to a that contains
a path to z. a will then update −−−−→a−2t+1 to be z, which is a contradiction to the
assumed stationary state of the algorithm.

If z ∈ (−−−−→a−2t+1 ,−−→a−2t] then −−−−→a−2t+1 is a better candidate for z =
−−−−−→−−→a−2t−2t . In the

next tick of a, a will send an UpdateRequest message to −−→a−2t which contains a path

to −−−−→a−2t+1 . −−→a−2t will then update
−−−−−→−−→a−2t−2t to be −−−−→a−2t+1 , which is a contradiction to

the assumed stationary state of the algorithm.
Therefore the only possibility for z is −−−−→a−2t+1 . By the inductive hypothesis we

have a direct h-path from
−−−−−→−−→a−2t−2t = z = −−−−→a−2t+1 to −−→a−2t , and a direct h-path

from −−→a−2t to a. The triple (−−−−→a−2t+1 ,−−→a−2t , a) is ordered clockwise. Therefore the
concatenation of the two direct h-paths will result in a direct h-path from −−−−→a−2t+1

to a

Case 2: d(a − 2t,−−→a−2t) ≥ d(a − 2t+1,−−−−→a−2t+1). Denote y :=
−−−−−→−−−−→a−2t+12t . We will

show that y = −−→a−2t .
By definition y ∈ [−−−−→a−2t+1 +2t,−−−−→a−2t+1]. If y ∈ [−−−−→a−2t+1 +2t,−−→a−2t) then y is a better

candidate for −−→a−2t . In the next tick of a, a will send an UpdateRequest message to
−−−−→a−2t+1 . −−−−→a−2t+1 will send back to a an UpdateResponse message with a path to y. a
will then update −−→a−2t to be y, which is a contradiction to the assumed stationary
state of the algorithm.

12 REAL

Figure 9. Paths from x to −−−→x2l−1 and from −−−−→x−2l−1 to x.

If y ∈ (−−→a−2t ,
−−−−→a−2t+1] then −−→a−2t is a better candidate for y =

−−−−−→−−−−→a−2t+12t . In the next
tick of a, a will send an UpdateRequest message to −−−−→a−2t+1 that contains a path to
−−→a−2t .

−−−−→a−2t+1 will then update
−−−−−→−−−−→a−2t+12t to be −−→a−2t , which is a contradiction to the

assumed stationary state of the algorithm.
Hence the only possibility for y is −−→a−2t . By the inductive hypothesis we have a

direct h-path from −−−−→a−2t+1 to
−−−−−→−−−−→a−2t+12t = y = −−→a−2t , and from −−→a−2t to a. The triple

(−−−−→a−2t+1 ,−−→a−2t , a) is ordered clockwise. Therefore the concatenation of the two direct
h-paths will result in a direct h-path from −−−−→a−2t+1 to a. �

Lemma 4.6 (one-round). Assume a stationary state during execution of IterF-2
over a graph G with V (G) ⊆ Sl. Let C be an h-cycle of nodes. Then R(C) = 1 (C
has only one round).

Proof. Observe the node w = −−−→x2l−1 = −−−−→x−2l−1 .
On one hand, by Lemma 4.5 there is a direct h-path P from x to w = −−−→x2l−1 . On

the other hand, by Lemma 4.5 there is a direct h-path Q from w = −−−−→x−2l−1 to x.
Therefore the cycle C is the concatenation of P and Q. Hence d(C) = d(P) +

d(Q) = d(x,w) + d(w, x) = 2l, and R(C) = d(C)/2l = 1.
�

5. IterF-3 Algorithm

5.1. Same h-cycle. In IterF-2 we made sure we always arrive at a stationary state
that contains possibly a few cycles, each of only one round (R(C) = 1). To allow
routing between any two nodes, we would like to get a single cycle of only one
round.

In this section we will show how achieve a single cycle by adding a few additional
nodes to maintain.

We begin by observing the algorithm IterF-2m,(b,b+2j), (b ∈ Sl and 0 ≤ j < l,

addition is done modulo 2l) where for some specific node m ∈ V we add two
additional nodes to maintain: −→mb and −−−→mb+2j . (See Algorithm 3). The rest of the
nodes perform IterF-2, as before.

A GLOBALLY CONNECTED OVERLAY FOR VIRTUAL RING ROUTING 13

Algorithm 3 IterF-2m,(b,b+2j) algorithm for the node m
(Modifications to IterF-1)

1: procedure UpdateFingers(candidates)
2: ml ← arg min

y∈candidates
d(y,m− 1)

3:
−→mb ← arg min

z∈candidates
d(m + b, z)

4:
−−−→mb+2j ← arg min

z∈candidates
d(m + b + 2j , z)

5: for i from 0 to l do
6:

−−−→m±2i ← arg min
z∈candidates

d(m± 2i, z)

7: end for
8: end procedure
9: procedure GetFingers

10: return
{
ml,−→mb,

−−−→mb+2j
}
∪ { −−−→m±2i | 0 ≤ i < l }

11: end procedure

Given a graph G with V ⊆ Sl, and an execution of IterF-2(b,b+2j) algorithm over
G, we define the state of the algorithm to be

K =
{

(x, xl, {−−→x±2i}l−1i=0)
∣∣ x ∈ V \ {m }

}
∪
{

(m,ml,−→mb,
−−−→mb+2j , {−−−→m±2i}l−1i=0)

}
We say that a state K is stationary if K will never change for any order of

periodic ticks and message arrivals. Like before, we can prove that every execution
of the algorithm IterF-2m,(b,b+2j) eventually arrives at a stationary state after a
finite amount of changes to K.

We can reduce a state of IterF-2m,(b,b+2j) to an IterF-2 state by leaving all the
tuples of x 6= m unchanged, and for m’s tuple: Omitting the extra maintained nodes
−→mb,
−−−→mb+2j . We can prove the properties of state reductions similarly to Lemma 4.3.

In other words, if we have a stationary state of IterF-2m,(b,b+2j), we can reduce it
to a stationary state of IterF-2 (And then reduce it even further to a stationary
state of IterF-1).

Lemma 5.1 (Same-h-cycle). Assume a stationary state during execution of IterF-
2m,(b,b+2j) over a graph G with V (G) ⊆ Sl. Then in the division of the graph to

disjoint one round h-cycles, the nodes −→mb and −−−→mb+2j are on the same h-cycle.

Proof. We distinct between two cases:

Case 1: d(m + b,−→mb) < d(m + b + 2j ,−−−→mb+2j). Then we denote z :=
−−→−→mb2j . We

will show that z = −−−→mb+2j .
By definition z ∈ [−→mb + 2j ,−→mb]. If z ∈ [−→mb + 2j ,−−−→mb+2j) then z is a better

candidate for −−−→mb+2j . In the next tick of m, m will send −→mb an UpdateRequest
message. −→mb will then send m an UpdateResponse message that contains a path
to z. m will then update −−−→mb+2j to be z, which is a contradiction to the stationary
state of the algorithm.

If z ∈ (−−−→mb+2j ,
−→mb] then −−−→mb+2j is a better candidate for z =

−−→−→mb2j . In the next
tick of m, m will send an UpdateRequest message to −→mb that contains a path to
−−−→mb+2j . −→mb will then update

−−→−→mb2j to be −−−→mb+2j , which is a contradiction to the
assumed stationary state of the algorithm.

14 REAL

Figure 10. m, −→mb and −−−→mb+2j

Therefore the only possibility left is that z = −−−→mb+2j . This means that
−−→−→mb2j =

−−−→mb+2j . Given that the current state of the algorithm is stationary, we can reduce
it to a stationary state of the IterF-2 algorithm, and by Lemma 4.5 we conclude
that there is a direct h-path from −→mb to −−−→mb+2j . Therefore −→mb and −−−→mb+2j must be
on the same h-cycle.

Case 2: d(m+ b,−→mb) ≥ d(m+ b+ 2j ,−−−→mb+2j). We denote by y :=
−−−−−−→−−−→mb+2j−2j . We

will show that y = −→mb.
By definition, y ∈ [−−−→mb+2j − 2j ,−−−→mb+2j]. If y ∈ [−−−→mb+2j − 2j ,−→mb) then y is a better

candidate for −→mb. In the next tick of m, m will send an UpdateRequest message to
−−−→mb+2j . −−−→mb+2j will then send m an UpdateResponse message that contains a path
to y. m will then update −→mb to be y, which is a contradiction to the stationary
state of the algorithm.

If y ∈ (−→mb,
−−−→mb+2j] then −→mb is a better candidate for y =

−−−−−−→−−−→mb+2j−2j . In the
next tick of m, m will send an UpdateRequest to −−−→mb+2j that contains a path to
−→mb.

−−−→mb+2j will then update
−−−−−−→−−−→mb+2j−2j to be −→mb, which is a contradiction to the

stationary state of the the algorithm.

Hence the only possibility left is that y = −→mb. This means that
−−−−−−→−−−→mb+2j−2j = −→mb.

Given that the current state of the algorithm is stationary, we can reduce it to a
stationary state of the IterF-2 algorithm, and by Lemma 4.5 we conclude that there
is a direct h-path from −→mb to −−−→mb+2j . Therefore −→mb and −−−→mb+2j must be on the same
h-cycle.

�

5.2. One h-cycle. Lemma 5.1 allows us to make sure that two nodes of the form:
−→mb,
−−−→mb+2j will always end up on the same h-cycle during a stationary state. To

achieve this, the node m has to maintain paths to two additional nodes: −→mb and
−−−→mb+2j .

Chaining this method repeatedly, we can make sure that m ends up on the same
h-cycle with any neighboring node x (A node that is directly connected to x). We
first observe the binary structure of the number x−m (mod 2l). Let j1, . . . , js be
the set of index numbers of set bits in this number. In other words, s ≤ l and
x−m ≡

∑
1≤i≤s 2ji (mod 2l).

A GLOBALLY CONNECTED OVERLAY FOR VIRTUAL RING ROUTING 15

The following will be the list of nodes for m to maintain:

• −−→m2j1

• . . .
• −−−−−−−−−−−→m2j1+2j2+···+2js = −−−−→mx−m = x

The last equality −−−−→mx−m = x is true because m is directly connected to x. Main-
taining the list of nodes above, we guarantee that m will be on the same h-cycle
as −−→m2j1 , which will be on the same h-cycle as −−−−−−→m2j1+2j2 , . . . , which will be on the
same h-cycle as x. This means that m and x will be on the same h-cycle during a
stationary state. We denote by C(m,x) the list

(
2j1 , . . . , 2j1 + 2j2 + · · ·+ 2js = x

)
.

Algorithm 4 IterF-3, algorithm for the node x (Modifications to IterF-1)

1: procedure UpdateFingers(candidates)
2: xl ← arg min

y∈candidates
d(y, x− 1)

3: for i from 0 to l do
4:

−−→x±2i ← arg min
z∈candidates

d(x± 2i, z)

5: end for
6: for n ∈ Neighbors(x) do
7: for q ∈ C(x,n) do

8:
−→xq ← arg min

z∈candidates
d(x + q, z)

9: end for
10: end for
11: end procedure
12: procedure GetFingers
13: return

{
xl
}
∪{ −−→x±2i | 0 ≤ i < l }∪

{−→xq

∣∣ q ∈ C(x,n) ∧ n ∈ Neighbors(x)
}

14: end procedure

Based on the ideas above, we construct the IterF-3 Algorithm 4. Given a graph
G with V ⊆ Sl and an execution of IterF-3 algorithm over G we define the state of
the algorithm to be:

K =
{

(x, xl, {−−→x±2i}l−1i=0, {
−→xq}q∈C(x,n)∧n∈Neighbors(x)

∣∣∣ x ∈ V
}

We say that a state K is stationary if K will never change for any order of
periodic ticks and message arrivals. As before, we can prove that every execution
of the algorithm IterF-3 eventually arrives at a stationary state after a finite amount
of changes to K.

If in IterF-3 the node m maintains the nodes mb,mb+2j , it is possible to reduce
the state IterF-3 an IterF-2m,(b,b+2j) state by omitting all the extra maintained
nodes. We can prove the properties of state reductions similarly to Lemma 4.3.

In other words, if we have a stationary state of IterF-3 where the node m main-
tains the nodes mb,mb+2j , we can reduce it to a stationary state of IterF-2m,(b,b+2j)

(And then possibly reduce it further to a stationary state of IterF-2 and IterF-1).

Theorem 5.2 (one-cycle). Assume a stationary state during execution of IterF-3
over a connected graph G with V (G) ⊆ Sl. Then there exists a one-round h-cycle
that contains all the nodes.

16 REAL

Proof. The stationary state K of IterF-3 can be reduced to a stationary state of
IterF-2. During a stationary state of IterF-2 there is a division of the nodes to
disjoint h-cycles, each of one round.

Let x be some node, and let y be a neighbor of x. (y is directly connected to
x). According to IterF-3 Algorithm 4, assuming that s ≤ l and y− x ≡

∑
1≤i≤s 2ji

(mod 2l), x maintains the nodes
−−→x2j1 , . . . ,

−−−−−−−−−−−→x2j1+2j2+···+2js = y

Therefore the stationary state K can be reduced to a stationary state of the
algorithm IterF-2x,(2j1+···+2jw ,2jw+1) for 1 ≤ w < s. By Lemma 4.5 we obtain that

x and −−→x2j1 are on the same h-cycle. By Lemma 5.1 we get that −−−−−−−−→x2j1+···+2jw is on
the same h-cycle as −−−−−−−−−−−−−→x2j1+···+2jw+2jw+1 for 1 ≤ w < s. Being on the same h-cycle is
transitive, therefore x and y will be on the same h-cycle.

As every two directly connected nodes are on the same one-round h-cycle and
the graph G is connected, we conclude that all the nodes in V (G) are on the same
one-round h-cycle. �

Note that the addition of nodes to maintain as done in IterF-3 Algorithm 4 is
very unlikely to be the most efficient method to ensure a single one-round h-cycle.

A specific way to think about this problem is to consider the graph Q: V (Q) =
Sl = [0, 2l), with edges

E(Q) =
{
{u, v}

∣∣ d(u, v) = 2j or d(v, u) = 2j for some 0 ≤ j < l
}

Given a subset U ⊆ V (Q), what is the minimum amount of edges required for a
tree to cover the vertices set U?

Our current solution (Used in IterF-3 Algorithm 4) is to pick one vertex u ∈ U
and find paths from u to all of the other vertices in U . This requires at most
l · (|U | − 1), which is O(l · |Neighbors(u)|).

6. Greedy Routing

In the previous sections we have demonstrated how to create a connected ring
overlay structure given a connected network. We now show how routing is per-
formed in the resulting overlay structure.

Lemma 6.1 (global-optimality). Assume a stationary state during execution of
IterF-3 over a connected graph G with V (G) ⊆ Sl. Let x ∈ V (G) and some r ∈ Sl

such that −→xr is maintained by x. Then −→xr = arg min
y∈V (G)

d(x + r, y)

Proof. Assume a stationary state of the IterF-3 Algorithm 4. Denote gr := arg min
y∈V (G)

d(x+

r, y). Suppose that −→xr 6= gr. By the definition of gr, gr ∈ [x+r,−→xr]. By Theorem 5.2
all the nodes V (G) are on the same single one-round h-cycle. Therefore there is a
direct h-path from gr to −→xr.

Consider the node p in that direct h-path such that pr = h(p) = −→xr. p ∈ (gr,
−→xr),

therefore p is a better candidate for−→xr. By Lemma 3.2, −→xr
l = p. Therefore next time

x sends an UpdateRequest message to −→xr, −→xr will respond with an UpdateResponse
message that contains a path to the node p. x will then update his value of −→xr to
be p, which is a contradiction to the given stationary state of the algorithm.

We conclude that −→xr = gr = arg min
y∈V (G)

d(x + r, y). �

A GLOBALLY CONNECTED OVERLAY FOR VIRTUAL RING ROUTING 17

Figure 11. A direct path from gr to −→xr

Algorithm 5 Greedy Routing, algorithm for node x

1: procedure passMessage(m,y)
2: if y == x then
3: onIncomingMessage(m)
4: return Received
5: end if
6: closest← arg min

z∈GetKnown()∪{ x }
d(z, y)

7: if closest == x then
8: return Dropped
9: end if

10: send PassMessage(m,y) to closest along the shortest maintained path.
11: end procedure
12: procedure onIncomingPassMessage(m,y)
13: return passMessage(m,y)
14: end procedure

Algorithm 5 describes how greedy routing is performed. If a node x wants to
send a message to node y, he finds the closest node he knows of to y (With respect
to the d distance), and then passes the message to that node along a maintained
path. We call this process a hop.4

Lemma 6.2 (routing-convergence). Assume a stationary state during execution of
IterF-3 over a connected graph G with V (G) ⊆ Sl. Let x ∈ V (G) and y ∈ Sl. Then
the execution of passMessage(m, y) from the node x will terminate after at most
log2 d(x, y) hops. If y ∈ V (G), the message will be received by y.

Proof. During the i-th hop, the node xi runs passMessage(m, y). If xi = y, the
node xi receives the message. Otherwise, xi calculates closesti which is the node z
that minimizes d(z, y) of all the nodes xi knows of.

4Note that during a hop a message is usually passed through many nodes in the network, as
it is sent along a maintained path

18 REAL

Figure 12. The i-th hop: Routing from xi to y

Consider the distance d(xi, y). For some k ∈ [0, l), 2k ≤ d(xi, y) < 2k+1. xi

maintains a path to the node
−−→
xi

2k . By Lemma 6.1
−→
xi

2k = arg min
v∈V (G)

d(xi + 2k, v).

Consider the case of closesti = xi (xi will drop the message). If y ∈ V (G)

then
−→
xi

2k ∈ [xi + 2k, y]. Note that by definition of closesti, closesti ∈ [
−−→
xi

2k , y]. If

closesti = xi then xi ∈ [
−−→
xi

2k , y], which is a contradiction. Therefore the message
can only be dropped in some hop if y 6∈ V (G).

In the case where the message was not dropped or received by xi, it will be passed

on: xi sends passMessage(m, y) to the node closesti = xi+1.
−−→
xi

2k ∈ [xi+2k, y], and
so also closesti = xi+1 ∈ [xi + 2k, y]. Thus d(xi+1, y) ≤ d(xi, y)− 2k < d(xi, y)/2.

The distance to y: d(xi, y) decreases by a factor of 2 in every message passing
hop. d(xi, y) is of integral positive value, therefore any message may be passed only
a finite amount of times. For the first hop, d(x, y) < 2l, hence there can be at most
log2 d(x, y) < l message passing hops.

We conclude that after at most l hops, every message will either be received or
dropped. �

References

1. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan Chord: A

scalable Peer-to-peer Lookup Service for Internet Applications
2. Thomas Fuhrmann, Pengfei Di, Kendy Kutzner, Curt Cramer Pushing Chord into the Under-

lay: Scalable Routing for Hybrid MANETs
3. Matthew Caesar, Miguel Castro, Edmund B. Nightingale, Greg O’Shea, Antony Rowstron

Virtual Ring Routing: Network Routing Inspired by DHTs

E-mail address, real: real@freedomlayer.org

	1. Intro
	2. Initial setup
	3. IterF-1 Algorithm
	3.1. Summary of IterF-1
	3.2. Analysis of IterF-1
	3.3. Division to h-cycles
	3.4. Multiple rounds

	4. IterF-2 Algorithm
	4.1. Analysis of IterF-2

	5. IterF-3 Algorithm
	5.1. Same h-cycle
	5.2. One h-cycle

	6. Greedy Routing
	References

